Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Res ; 283: 127695, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554651

RESUMEN

Cap expansion in agaricoid mushroom species is an important event for sexual reproduction because meiosis occurs in basidia under the cap, and basidiospores can be released by opening the cap. However, molecular mechanisms underlying cap expansion in basidiomycetes remain poorly understood. We aimed to elucidate the molecular mechanisms of cap expansion in basidiomycetes by analyzing the unique cap-expansionless UV mutant #13 (exp2-1) in Coprinopsis cinerea. Linkage analysis and consequent genome sequence analysis revealed that the gene responsible for the mutant phenotypes encodes a putative transcription factor with two C2H2 zinc finger motifs. The mutant that was genome-edited to lack exp2 exhibited an expansionless phenotype. Some of the genes encoding cell wall degradation-related enzymes showed decreased expression during cap expansion and autolysis in the exp2 UV and genome-edited mutant. The exp2 gene is widely conserved in Agaricomycetes, suggesting that Exp2 homologs regulate fruiting body maturation in Agaricomycetes, especially cap expansion in Agaricoid-type mushroom-forming fungi. Therefore, exp2 homologs could be a target for mushroom breeding to maintain shape after harvest for some cultivating mushrooms, presenting a promising avenue for further research in breeding techniques.


Asunto(s)
Agaricales , Basidiomycota , Cuerpos Fructíferos de los Hongos/genética , Agaricales/genética , Dedos de Zinc/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
Plant Cell Physiol ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424724

RESUMEN

Sulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined. Therefore, we analyzed the sulfate transport, S-containing metabolites accumulation, and plant growth using Arabidopsis SULTR2;1 disruption lines, sultr2;1-1 and sultr2;1-2, from seedling to mature growth stages to clarify the metabolic and physiological roles of SULTR2;1. We observed that sulfate distribution to the stems was affected in sultr2;1 mutants resulting in decreased levels of sulfate, cysteine, glutathione (GSH), and total S in the stems, flowers, and siliques; however, the GSH levels increased in the rosette leaves. This suggested the essential role of SULTR2;1 in sulfate transport from rosette leaves to the primary stem. In addition, sultr2;1 mutants unexpectedly bolted earlier than the wild-type without affecting the plant biomass. Correlation between GSH levels in rosette leaves and the bolting timing suggested the rosette leaf GSH levels or limited sulfate transport to the early stem can trigger bolting. Overall, this study demonstrated the critical roles of SULTR2;1 in maintaining the S metabolite levels in the aerial part and transitioning from the vegetative to the reproductive growth phase.

3.
Plant Physiol ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478427

RESUMEN

4-Coumaroyl-CoA ligase (4CL) is a key enzyme in the phenylpropanoid pathway, which is involved in the biosynthesis of various specialized metabolites such as flavonoids, coumarins, lignans, and lignin. Plants have several 4CLs showing divergence in sequence: class I 4CLs involved in lignin metabolism, class II 4CLs associated with flavonoid metabolism, and atypical 4CLs and 4CL-like proteins of unknown function. Shikonin, a Boraginaceae-specific specialized metabolite in red gromwell (Lithospermum erythrorhizon), is biosynthesized from p-hydroxybenzoic acid, and the involvement of 4CL in its biosynthesis has long been debated. In this study, we demonstrated the requirement of 4CL for shikonin biosynthesis using a 4CL-specific inhibitor. In silico analysis of the L. erythrorhizon genome revealed the presence of at least eight 4CL genes, among which the expression of three (Le4CL3, Le4CL4, and Le4CL5) showed a positive association with shikonin production. Phylogenetic analysis indicated that Le4CL5 belongs to class I 4CLs, while Le4CL3 and Le4CL4 belong to clades that are distant from class I and class II. Interestingly, both Le4CL3 and Le4CL4 have peroxisome targeting signal 1 in their C-terminal region, and subcellular localization analysis revealed that both localize to the peroxisome. We targeted each of the three Le4CL genes by CRISPR/Cas9-mediated mutagenesis and observed remarkably lower shikonin production in Le4CL3-ge and Le4CL4-ge genome-edited lines compared with the vector control. We therefore conclude that peroxisomal Le4CL3 and Le4CL4 are responsible for shikonin production and propose a model for metabolite-specific 4CL distribution in L. erythrorhizon.

4.
Plant Physiol ; 194(2): 832-848, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37831082

RESUMEN

Grasses are abundant feedstocks that can supply lignocellulosic biomass for production of cell-wall-derived chemicals. In grass cell walls, lignin is acylated with p-coumarate. These p-coumarate decorations arise from the incorporation of monolignol p-coumarate conjugates during lignification. A previous biochemical study identified a rice (Oryza sativa) BAHD acyltransferase (AT) with p-coumaroyl-CoA:monolignol transferase (PMT) activity in vitro. In this study, we determined that that enzyme, which we name OsPMT1 (also known as OsAT4), and the closely related OsPMT2 (OsAT3) harbor similar catalytic activity toward monolignols. We generated rice mutants deficient in either or both OsPMT1 and OsPMT2 by CRISPR/Cas9-mediated mutagenesis and subjected the mutants' cell walls to analysis using chemical and nuclear magnetic resonance methods. Our results demonstrated that OsPMT1 and OsPMT2 both function in lignin p-coumaroylation in the major vegetative tissues of rice. Notably, lignin-bound p-coumarate units were undetectable in the ospmt1 ospmt2-2 double-knockout mutant. Further, in-depth structural analysis of purified lignins from the ospmt1 ospmt2-2 mutant compared with control lignins from wild-type rice revealed stark changes in polymer structures, including alterations in syringyl/guaiacyl aromatic unit ratios and inter-monomeric linkage patterns, and increased molecular weights. Our results provide insights into lignin polymerization in grasses that will be useful for the optimization of bioengineering approaches for the effective use of biomass in biorefineries.


Asunto(s)
Oryza , Transferasas , Transferasas/análisis , Transferasas/metabolismo , Oryza/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Pared Celular/metabolismo
5.
Plant Physiol ; 192(3): 2457-2474, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36994817

RESUMEN

Cytokinins (CKs), a class of phytohormones with vital roles in growth and development, occur naturally with various side-chain structures, including N6-(Δ2-isopentenyl)adenine-, cis-zeatin- and trans-zeatin (tZ)-types. Recent studies in the model dicot plant Arabidopsis (Arabidopsis thaliana) have demonstrated that tZ-type CKs are biosynthesized via cytochrome P450 monooxygenase (P450) CYP735A and have a specific function in shoot growth promotion. Although the function of some of these CKs has been demonstrated in a few dicotyledonous plant species, the importance of these variations and their biosynthetic mechanism and function in monocots and in plants with distinctive side-chain profiles other than Arabidopsis, such as rice (Oryza sativa), remain elusive. In this study, we characterized CYP735A3 and CYP735A4 to investigate the role of tZ-type CKs in rice. Complementation test of the Arabidopsis CYP735A-deficient mutant and CK profiling of loss-of-function rice mutant cyp735a3 cyp735a4 demonstrated that CYP735A3 and CYP735A4 encode P450s required for tZ-type side-chain modification in rice. CYP735As are expressed in both roots and shoots. The cyp735a3 cyp735a4 mutants exhibited growth retardation concomitant with reduction in CK activity in both roots and shoots, indicating that tZ-type CKs function in growth promotion of both organs. Expression analysis revealed that tZ-type CK biosynthesis is negatively regulated by auxin, abscisic acid, and CK and positively by dual nitrogen nutrient signals, namely glutamine-related and nitrate-specific signals. These results suggest that tZ-type CKs control the growth of both roots and shoots in response to internal and environmental cues in rice.


Asunto(s)
Arabidopsis , Oryza , Citocininas/metabolismo , Zeatina/metabolismo , Oryza/genética , Oryza/metabolismo , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
6.
Methods Mol Biol ; 2653: 21-38, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995617

RESUMEN

Genome editing has revolutionized plant research and plant breeding by enabling precise genome manipulation. In particular, the application of type II CRISPR-Cas9 systems to genome editing has proved an important milestone, accelerating genetic engineering and the analysis of gene function. On the other hand, the potential of other types of CRISPR-Cas systems, especially many of the most abundant type I CRISPR-Cas systems, remains unexplored. We recently developed a novel genome editing tool, TiD, based on the type I-D CRISPR-Cas system. In this chapter, we describe a protocol for genome editing of plant cells using TiD. This protocol allows the application of TiD to induce short insertion and deletions (indels) or long-range deletions at target sites with high specificity in tomato cells.


Asunto(s)
Edición Génica , Fitomejoramiento , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Plantas/genética , Ingeniería Genética , Genoma de Planta/genética
7.
Fungal Genet Biol ; 165: 103777, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669556

RESUMEN

Colletotrichum orbiculare is employed as a model fungus to analyze molecular aspects of plant-fungus interactions. Although gene disruption via homologous recombination (HR) was established for C. orbiculare, this approach is laborious due to its low efficiency. Here we developed methods to generate multiple knockout mutants of C. orbiculare efficiently. We first found that CRISPR-Cas9 system massively promoted gene-targeting efficiency. By transiently introducing a CRISPR-Cas9 vector, more than 90% of obtained transformants were knockout mutants. Furthermore, we optimized a self-excision Cre-loxP marker recycling system for C. orbiculare because a limited availability of desired selective markers hampers sequential gene disruption. In this system, the integrated selective marker is removable from the genome via Cre recombinase driven by a xylose-inducible promoter, enabling the reuse of the same selective marker for the next transformation. Using our CRISPR-Cas9 and Cre-loxP systems, we attempted to identify functional sugar transporters involved in fungal virulence. Multiple disruptions of putative quinate transporter genes restricted fungal growth on media containing quinate as a sole carbon source, confirming their functionality as quinate transporters. However, our analyses showed that quinate acquisition was dispensable for infection to host plants. In addition, we successfully built mutations of 17 cellobiose transporter genes in a strain. From the data of knockout mutants that we established in this study, we inferred that repetitive rounds of gene disruption using CRISPR-Cas9 and Cre-loxP systems do not cause adverse effects on fungal virulence and growth. Therefore, these systems will be powerful tools to perform a systematic loss-of-function approach for C. orbiculare.


Asunto(s)
Sistemas CRISPR-Cas , Colletotrichum , Ácido Quínico , Integrasas/genética , Integrasas/metabolismo , Colletotrichum/genética , Edición Génica/métodos
8.
Plant Physiol ; 191(1): 70-86, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36124989

RESUMEN

Bioengineering approaches to modify lignin content and structure in plant cell walls have shown promise for facilitating biochemical conversions of lignocellulosic biomass into valuable chemicals. Despite numerous research efforts, however, the effect of altered lignin chemistry on the supramolecular assembly of lignocellulose and consequently its deconstruction in lignin-modified transgenic and mutant plants is not fully understood. In this study, we aimed to close this gap by analyzing lignin-modified rice (Oryza sativa L.) mutants deficient in 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (CAldOMT) and CINNAMYL ALCOHOL DEHYDROGENASE (CAD). A set of rice mutants harboring knockout mutations in either or both OsCAldOMT1 and OsCAD2 was generated in part by genome editing and subjected to comparative cell wall chemical and supramolecular structure analyses. In line with the proposed functions of CAldOMT and CAD in grass lignin biosynthesis, OsCAldOMT1-deficient mutant lines produced altered lignins depleted of syringyl and tricin units and incorporating noncanonical 5-hydroxyguaiacyl units, whereas OsCAD2-deficient mutant lines produced lignins incorporating noncanonical hydroxycinnamaldehyde-derived units. All tested OsCAldOMT1- and OsCAD2-deficient mutants, especially OsCAldOMT1-deficient lines, displayed enhanced cell wall saccharification efficiency. Solid-state nuclear magnetic resonance (NMR) and X-ray diffraction analyses of rice cell walls revealed that both OsCAldOMT1- and OsCAD2 deficiencies contributed to the disruptions of the cellulose crystalline network. Further, OsCAldOMT1 deficiency contributed to the increase of the cellulose molecular mobility more prominently than OsCAD2 deficiency, resulting in apparently more loosened lignocellulose molecular assembly. Such alterations in cell wall chemical and supramolecular structures may in part account for the variations of saccharification performance of the OsCAldOMT1- and OsCAD2-deficient rice mutants.


Asunto(s)
Lignina , Oryza , Lignina/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Mutación/genética , Pared Celular/metabolismo
9.
Plant Physiol ; 190(4): 2155-2172, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36149320

RESUMEN

The 4-coumarate:coenzyme A ligase (4CL) is a key enzyme that contributes to channeling metabolic flux in the cinnamate/monolignol pathway, leading to the production of monolignols, p-hydroxycinnamates, and a flavonoid tricin, the major building blocks of lignin polymer in grass cell walls. Vascular plants often contain multiple 4CL genes; however, the contribution of each 4CL isoform to lignin biosynthesis remains unclear, especially in grasses. In this study, we characterized the functions of two rice (Oryza sativa L.) 4CL isoforms (Os4CL3 and Os4CL4) primarily by analyzing the cell wall chemical structures of rice mutants generated by CRISPR/Cas9-mediated targeted mutagenesis. A series of chemical and nuclear magnetic resonance analyses revealed that loss-of-function of Os4CL3 and Os4CL4 differently altered the composition of lignin polymer units. Loss of function of Os4CL3 induced marked reductions in the major guaiacyl and syringyl lignin units derived from both the conserved non-γ-p-coumaroylated and the grass-specific γ-p-coumaroylated monolignols, with more prominent reductions in guaiacyl units than in syringyl units. In contrast, the loss-of-function mutation to Os4CL4 primarily decreased the abundance of the non-γ-p-coumaroylated guaiacyl units. Loss-of-function of Os4CL4, but not of Os4CL3, reduced the grass-specific lignin-bound tricin units, indicating that Os4CL4 plays a key role not only in monolignol biosynthesis but also in the biosynthesis of tricin used for lignification. Further, the loss-of-function of Os4CL3 and Os4CL4 notably reduced cell-wall-bound ferulates, indicating their roles in cell wall feruloylation. Overall, this study demonstrates the overlapping but divergent roles of 4CL isoforms during the coordinated production of various lignin monomers.


Asunto(s)
Oryza , Oryza/metabolismo , Lignina/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Pared Celular/metabolismo , Mutación/genética
10.
Plant Physiol ; 188(4): 1825-1837, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35099553

RESUMEN

Since its first appearance, CRISPR-Cas9 has been developed extensively as a programmable genome-editing tool, opening a new era in plant genome engineering. However, CRISPR-Cas9 still has some drawbacks, such as limitations of the protospacer-adjacent motif (PAM) sequence, target specificity, and the large size of the cas9 gene. To combat invading bacterial phages and plasmid DNAs, bacteria and archaea have diverse and unexplored CRISPR-Cas systems, which have the potential to be developed as a useful genome editing tools. Recently, discovery and characterization of additional CRISPR-Cas systems have been reported. Among them, several CRISPR-Cas systems have been applied successfully to plant and human genome editing. For example, several groups have achieved genome editing using CRISPR-Cas type I-D and type I-E systems, which had never been applied for genome editing previously. In addition to higher specificity and recognition of different PAM sequences, recently developed CRISPR-Cas systems often provide unique characteristics that differ from well-known Cas proteins such as Cas9 and Cas12a. For example, type I CRISPR-Cas10 induces small indels and bi-directional long-range deletions ranging up to 7.2 kb in tomatoes (Solanum lycopersicum L.). Type IV CRISPR-Cas13 targets RNA, not double-strand DNA, enabling highly specific knockdown of target genes. In this article, we review the development of CRISPR-Cas systems, focusing especially on their application to plant genome engineering. Recent CRISPR-Cas tools are helping expand our plant genome engineering toolbox.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Genoma de Planta/genética , Humanos , Plantas/genética
11.
Front Plant Sci ; 12: 627832, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093603

RESUMEN

Tomato INDOLE-3-ACETIC ACID9 (SlIAA9) is a transcriptional repressor in auxin signal transduction, and SlIAA9 knockout tomato plants develop parthenocarpic fruits without fertilization. We generated sliaa9 mutants with parthenocarpy in several commercial tomato cultivars (Moneymaker, Rio Grande, and Ailsa Craig) using CRISPR-Cas9, and null-segregant lines in the T1 generation were isolated by self-pollination, which was confirmed by PCR and Southern blot analysis. We then estimated shoot growth phenotypes of the mutant plants under different light (low and normal) conditions. The shoot length of sliaa9 plants in Moneymaker and Rio Grande was smaller than those of wild-type cultivars in low light conditions, whereas there was not clear difference between the mutant of Ailsa Craig and the wild-type under both light conditions. Furthermore, young seedlings in Rio Grande exhibited shade avoidance response in hypocotyl growth, in which the hypocotyl lengths were increased in low light conditions, and sliaa9 mutant seedlings of Ailsa Craig exhibited enhanced responses in this phenotype. Fruit production and growth rates were similar among the sliaa9 mutant tomato cultivars. These results suggest that control mechanisms involved in the interaction of AUX/IAA9 and lights condition in elongation growth differ among commercial tomato cultivars.

12.
Nucleic Acids Res ; 49(11): 6347-6363, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34076237

RESUMEN

Adoption of CRISPR-Cas systems, such as CRISPR-Cas9 and CRISPR-Cas12a, has revolutionized genome engineering in recent years; however, application of genome editing with CRISPR type I-the most abundant CRISPR system in bacteria-remains less developed. Type I systems, such as type I-E, and I-F, comprise the CRISPR-associated complex for antiviral defense ('Cascade': Cas5, Cas6, Cas7, Cas8 and the small subunit) and Cas3, which degrades the target DNA; in contrast, for the sub-type CRISPR-Cas type I-D, which lacks a typical Cas3 nuclease in its CRISPR locus, the mechanism of target DNA degradation remains unknown. Here, we found that Cas10d is a functional nuclease in the type I-D system, performing the role played by Cas3 in other CRISPR-Cas type I systems. The type I-D system can be used for targeted mutagenesis of genomic DNA in human cells, directing both bi-directional long-range deletions and short insertions/deletions. Our findings suggest the CRISPR-Cas type I-D system as a unique effector pathway in CRISPR that can be repurposed for genome engineering in eukaryotic cells.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/metabolismo , Edición Génica , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Células HEK293 , Humanos , Mutagénesis , Mutación
14.
AMB Express ; 11(1): 30, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33609205

RESUMEN

Pleurotus ostreatus is one of the most commercially produced edible mushrooms worldwide. Improved cultivated strains with more useful traits have been obtained using classical breeding, which is laborious and time-consuming. Here, we attempted efficient gene mutagenesis using plasmid-based CRISPR/Cas9 as the first step for non-genetically modified (non-GM) P. ostreatus generation. Plasmids harboring expression cassettes of Cas9 and different single guide RNAs targeting fcy1 and pyrG were individually transferred into fungal protoplasts of the PC9 strain, which generated some strains exhibiting resistance to 5-fluorocytosine and 5-fluoroorotic acid, respectively. Genomic PCR followed by sequencing revealed small insertions/deletions or insertion of a fragment from the plasmid at the target site in some of the drug-resistant strains. The results demonstrated efficient CRISPR/Cas9-assisted genome editing in P. ostreatus, which could contribute to the molecular breeding of non-GM cultivated strains in the future. Furthermore, a mutation in fcy1 via homology-directed repair using this CRISPR/Cas9 system was also efficiently introduced, which could be applied not only for precise gene disruption, but also for insertions leading to heterologous gene expression in this fungus.

15.
Commun Biol ; 3(1): 648, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159140

RESUMEN

Genome editing in plants has advanced greatly by applying the clustered regularly interspaced short palindromic repeats (CRISPRs)-Cas system, especially CRISPR-Cas9. However, CRISPR type I-the most abundant CRISPR system in bacteria-has not been exploited for plant genome modification. In type I CRISPR-Cas systems, e.g., type I-E, Cas3 nucleases degrade the target DNA in mammals. Here, we present a type I-D (TiD) CRISPR-Cas genome editing system in plants. TiD lacks the Cas3 nuclease domain; instead, Cas10d is the functional nuclease in vivo. TiD was active in targeted mutagenesis of tomato genomic DNA. The mutations generated by TiD differed from those of CRISPR/Cas9; both bi-directional long-range deletions and short indels mutations were detected in tomato cells. Furthermore, TiD can be used to efficiently generate bi-allelic mutant plants in the first generation. These findings indicate that TiD is a unique CRISPR system that can be used for genome engineering in plants.


Asunto(s)
Desoxirribonucleasas/genética , Edición Génica , Ingeniería Genética , Genoma de Planta , Solanum lycopersicum/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
16.
Sci Rep ; 10(1): 16776, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009418

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Plant Sci ; 296: 110466, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32539998

RESUMEN

Breeding to enrich lignin, a major component of lignocelluloses, in plants contributes to enhanced applications of lignocellulosic biomass into solid biofuels and valuable aromatic chemicals. To collect information on enhancing lignin deposition in grass species, important lignocellulose feedstocks, we generated rice (Oryza sativa) transgenic lines deficient in OsWRKY36 and OsWRKY102, which encode putative transcriptional repressors for secondary cell wall formation. We used CRISPR/Cas9-mediated targeted mutagenesis and closely characterized their altered cell walls using chemical and nuclear magnetic resonance (NMR) methods. Both OsWRKY36 and OsWRKY102 mutations significantly increased lignin content by up to 28 % and 32 %, respectively. Additionally, OsWRKY36/OsWRKY102-double-mutant lines displayed lignin enrichment of cell walls (by up to 41 %) with substantially altered culm morphology over the single-mutant lines as well as the wild-type controls. Our chemical and NMR analyses showed that relative abundances of guaiacyl and p-coumarate units were slightly higher and lower, respectively, in the WRKY mutant lignins compared with those in the wild-type lignins. Our results provide evidence that both OsWRKY36 and OsWRKY102 are associated with repression of rice lignification.


Asunto(s)
Lignina/metabolismo , Oryza/anatomía & histología , Proteínas de Plantas/fisiología , Tallos de la Planta/anatomía & histología , Factores de Transcripción/fisiología , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Pared Celular/metabolismo , Edición Génica , Técnicas de Inactivación de Genes , Espectroscopía de Resonancia Magnética , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo
18.
BMC Plant Biol ; 20(1): 234, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32450802

RESUMEN

Traditionally, generation of new plants with improved or desirable features has relied on laborious and time-consuming breeding techniques. Genome-editing technologies have led to a new era of genome engineering, enabling an effective, precise, and rapid engineering of the plant genomes. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) has emerged as a new genome-editing tool, extensively applied in various organisms, including plants. The use of CRISPR/Cas9 allows generating transgene-free genome-edited plants ("null segregants") in a short period of time. In this review, we provide a critical overview of the recent advances in CRISPR/Cas9 derived technologies for inducing mutations at target sites in the genome and controlling the expression of target genes. We highlight the major breakthroughs in applying CRISPR/Cas9 to plant engineering, and challenges toward the production of null segregants. We also provide an update on the efforts of engineering Cas9 proteins, newly discovered Cas9 variants, and novel CRISPR/Cas systems for use in plants. The application of CRISPR/Cas9 and related technologies in plant engineering will not only facilitate molecular breeding of crop plants but also accelerate progress in basic research.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Genoma de Planta/genética , Plantas Modificadas Genéticamente/genética
19.
Plant Cell Physiol ; 60(11): 2496-2509, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31418782

RESUMEN

Lotus japonicus is an important model legume plant in several fields of research, such as secondary (specialized) metabolism and symbiotic nodulation. This plant accumulates triterpenoids; however, less information regarding its composition, content and biosynthesis is available compared with Medicago truncatula and Glycine max. In this study, we analyzed the triterpenoid content and composition of L. japonicus. Lotus japonicus accumulated C-28-oxidized triterpenoids (ursolic, betulinic and oleanolic acids) and soyasapogenols (soyasapogenol B, A and E) in a tissue-dependent manner. We identified an oxidosqualene cyclase (OSC) and two cytochrome P450 enzymes (P450s) involved in triterpenoid biosynthesis using a yeast heterologous expression system. OSC9 was the first enzyme derived from L. japonicus that showed α-amyrin (a precursor of ursolic acid)-producing activity. CYP716A51 showed triterpenoid C-28 oxidation activity. LjCYP93E1 converted ß-amyrin into 24-hydroxy-ß-amyrin, a metabolic intermediate of soyasapogenols. The involvement of the identified genes in triterpenoid biosynthesis in L. japonicus plants was evaluated by quantitative real-time PCR analysis. Furthermore, gene loss-of-function analysis of CYP716A51 and LjCYP93E1 was conducted. The cyp716a51-mutant L. japonicus hairy roots generated by the genome-editing technique produced no C-28 oxidized triterpenoids. Likewise, the complete abolition of soyasapogenols and soyasaponin I was observed in mutant plants harboring Lotus retrotransposon 1 (LORE1) in LjCYP93E1. These results indicate that the activities of these P450 enzymes are essential for triterpenoid biosynthesis in L. japonicus. This study increases our understanding of triterpenoid biosynthesis in leguminous plants and provides information that will facilitate further studies of the physiological functions of triterpenoids using L. japonicus.


Asunto(s)
Lotus/metabolismo , Triterpenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácido Oleanólico/metabolismo , Proteínas de Plantas/metabolismo , Ácido Ursólico
20.
Nat Plants ; 5(4): 363-368, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30911123

RESUMEN

Technology involving the targeted mutagenesis of plants using programmable nucleases has been developing rapidly and has enormous potential in next-generation plant breeding. Notably, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) (CRISPR-Cas9) system has paved the way for the development of rapid and cost-effective procedures to create new mutant populations in plants1,2. Although genome-edited plants from multiple species have been produced successfully using a method in which a Cas9-guide RNA (gRNA) expression cassette and selectable marker are integrated into the genomic DNA by Agrobacterium tumefaciens-mediated transformation or particle bombardment3, CRISPR-Cas9 integration increases the chance of off-target modifications4, and foreign DNA sequences cause legislative concerns about genetically modified organisms5. Therefore, DNA-free genome editing has been developed, involving the delivery of preassembled Cas9-gRNA ribonucleoproteins (RNPs) into protoplasts derived from somatic tissues by polyethylene glycol-calcium (PEG-Ca2+)-mediated transfection in tobacco, Arabidopsis, lettuce, rice6, Petunia7, grapevine, apple8 and potato9, or into embryo cells by biolistic bombardment in maize10 and wheat11. However, the isolation and culture of protoplasts is not feasible in most plant species and the frequency of obtaining genome-edited plants through biolistic bombardment is relatively low. Here, we report a genome-editing system via direct delivery of Cas9-gRNA RNPs into plant zygotes. Cas9-gRNA RNPs were transfected into rice zygotes produced by in vitro fertilization of isolated gametes12 and the zygotes were cultured into mature plants in the absence of selection agents, resulting in the regeneration of rice plants with targeted mutations in around 14-64% of plants. This efficient plant-genome-editing system has enormous potential for the improvement of rice as well as other important crop species.


Asunto(s)
ADN de Plantas/genética , Edición Génica/métodos , Oryza/genética , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Marcadores Genéticos/genética , Genoma de Planta/genética , Cigoto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...